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We prove the following theorem concerning cubic periodic spline interpolation: If
{; denote the Lagrangian splines in cubic periodic spline interpolation with period ¥
on the grid 7, then the sum of the squares of the {,, j = 0,... N — 1, is bounded by
one. An analogous result for the space -, of algebraic polynomials of degree n and
for the interval |—1. 1] was given by Fejér.

Let S be the space of periodic splines of degree m with period N on the
grid 7 (N, m € N, modd). Given N values y,,..»y, , € 1<, there exists a
unique spline s € S, for which s(j)=y,./=0,...N— L

Let (M€ S be the jth Lagrange spline. ie., [*'(i)=0,.
i.j € {0..... N — 1}. By a result of Reimer |5],

I = max |1 (x)f = 1 (1)

this means that {/{*’: j=0,.., N — 1} form an extremal basis of S\, (for the
definition of an extremal basis see Reimer |4]).

An analogous result for the space [, of algebraic polynomials of degree n
was given by Fejér |1]. The nodes used by Fejér are the relative extremals of
the Legendre polynomial of degree n. He even proved the following
inequality for the corresponding Lagrange polynomials 5,]: O...., n:

f TN <l xel-11]. 2)

j -0

.

By (1) and the boundedness of the Lebesgue constants || )0 1/4V]]l (see
Richards |6}]), the norm of 3} ' (/{¥)? is bounded too. Because of this and
Fejér’s result, we even conjecture that
Nl
sV = N (V)< xEgln (3)

0

In what follows we prove this conjecture for m = 3.
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THEOREM. Let I’V € §{V, j=0,.... N — 1, be the cubic periodic Lagrange
splines corresponding to the nodes 0,...N — 1 (i.e, [[Y'(i)=0,;). Then

N-1
sVx) =N (M)LK, xel (4)
=

Before proving the Theorem, we derive an explicit expression for sV, Let
g (1) =" (j+ 1), t€R, jE Z, be the “shifted” Lagrange spline /™ and let
H (¢, z) denote the generalized Euler—Frobenius polynomial of degree m (for
a definition see Meinardus and Merz [2], ter Morsche [3], and Reimer |5]).
Further, let

A,()=H,(t,z,), B, (t)=A4,(1—-1), C,:=H,0,z,). u=1l,..r

where m = 2r + 1, z,, are those zeros of H, (0, -) with z, < --- <z, < -1 and
H? denotes the partial derivative of H, with respect to the second variable.
By a result of Reimer 5] we have

) H (Lz YNy H (-t z2,.) 2!
q;’\)(f):(l—t)m 50“,-+tm5‘;vw1.j“ .\_. m( M) “ m( - u) 4

P H(0.2,)(z; — 1)
(5)
fort€[0,1],7€ {0, 1,..., N —1}. Hence for N > |
, \ 1 z 41
My = N .
N e T e MU R
\ zf\'*l
2N . —‘L—. .
+2. 0N :
I<u< |<rC C(Z *1)(2 _1)
NN zx‘zx/
¢ ur v
X ) 2 A0
AN 4 B
+1_[2m+12mw2.1_tm_\ u M uz
( ) ( ) [T | Cu(ZZ—I)
r N1
g A +B0 )
uol Cu(z‘zil)

where

a,, () :=A4,0)-A,(t)+ B,(t) - B.()
and (7)

Bunlt) == A,(1) - B(1) + A,(1) - B, ().
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Proof of the Theorem. Let p*™™ be the unique polynomial of degree 6
with p™ {1, =s"1,,, and let 7, be the greatest zero of H,(-,z,). By a
short calculation, 1, = (1 +/3)/2. Writing 4, B. C instead of 4,. B, C,
and using (6). we have for N > 1

N A(t) + BY(1) 2 2-A()-Bu) oz !

V() — . . !

P = Czi— 1) (1+z'l”—l )+N c? (z7 — 1)
+(1z)6+tk6?2—-1—)
X (1 =)' A 2y + B) + (AW + B() 2} ). (8)

In particular, for 1 =1, (8) yields for N > 1
N 2B(t,) /3 -1 3
(N) )= _ 0 . 2 3
P e s Ve
and (9)

Pi) = lim p V(1) = 2f—¢3 <.

Since B(t,) < 0 and C > 0 formula (9) implies the inequalities

p‘z}(to) < P(4)(10) <o <p(2‘“(l()) <pu ’(ln)
and (10)

pt(ty) >p(3)([0) > e > ptte P(ty) > p(1y).
Because of p'"’ = 1, formulas (9) and (10) together imply
P < 1 forall N € N, (1

As a consequence of (8) we have p*™™(¢) = p™Y'(1 —¢), ¢t € Ix. This, together
with p¥(0) =1, (d/dt) p™(0)=0 (note that s"V(¢)=s"'(~¢)) and (11),
implies that (d/df) p'™ has zeros at 1 —¢& 0, 4, 1, & where &> 1. Since
(d/dt) p'™ has degree 5, these are the only zeros and they are simple. Using
lim,,, . p"™(t)=+ co we conclude that p'*’ has relative maxima at 1 =0
and =1 and hence a relative minimum at ¢ = 4. Thus

p™M() < L, (€ [0, 1] (12)

As IM(@) =1Vt + 1), s has period 1. Since p™ |, ;=5 [, (12)
completes the proof.

As the Lagrange splines [}’
we have the following

converge to the cardinal Lagrange spline /{*’
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COROLLARY. Let [{* be the jth cardinal Lagrange spline for the grid
(le. I =08,.i,j€ ) of degree 3. Then

‘\—‘ (l;u))l =1.

jed

Proof. Let N,, N € N be arbitrary. Then by the Theorem.

Not Ny Ny Ay
NI = N PN =N (V- Ny <

i iy, i,

for N> N, + N,. 1€ T Hence

N, N
STyt =lim N M) <L

Jo =Ny YUY N,

which proves the Corollary.
As a consequence of the Theorem and the Corollary we have

V=1 j=0u, N~ 1, (13)

and
f=1 jes (14)

This result is part of a theorem of Reimer |5, who proved (13) and (14) for
any periodic Lagrangian spline of odd degree m.

The following graph illustrates the quantitative behaviour of s
for the typical case N =20.

N)

and p4\>
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